Subsurface-domain, interferometric objective functions for target-oriented waveform inversion
نویسندگان
چکیده
منابع مشابه
Target-oriented Time-lapse Waveform Inversion using Virtual Survey
Time-lapse seismic data are widely used for monitoring timevariant subsurface changes. Conventional analysis provides qualitative information by comparing results from consecutive surveys, whereas waveform inversion can retrieve quantitative estimates of reservoir properties through seismic waveform fitting. The quantitative evaluation of the physical parameters obtained by waveform inversion a...
متن کاملDiscretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کامل3D acoustic frequency-domain full-waveform inversion
We present one of the first attempt at implementing a massively parallel frequency-domain full-waveform inversion algorithm for imaging 3D acoustic media. The inverse method is based on a classic steepest-descent algorithm. The algorithm was designed so that one or several frequencies are inverted at a time. Wave propagation modeling, a key component of the inversion algorithm, is performed wit...
متن کاملFull waveform inversion with optimal basis functions.
Based on the approach suggested by Tarantola, and Gauthier et al., we show that the alternate use of the step (linear) function basis and the block function (quasi-delta function) basis can give accurate full waveform inversion results for the layered acoustic systems, starting from a uniform background. Our method is robust against additive white noise (up to 20% of the signal) and can resolve...
متن کاملA global optimizing approach for waveform inversion of receiver functions
A global optimizing approach is developed and implemented to retrieve one-dimensional crustal structure by waveform inversion of teleseismic receiver functions. The global optimization for the inversion is performed using a Differential Evolution (DE) algorithm. This modeling approach allows the user to perturb, within a preset range of reasonable bounds, multiple parameters such as Vp, Vp/Vs, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: GEOPHYSICS
سال: 2017
ISSN: 0016-8033,1942-2156
DOI: 10.1190/geo2016-0608.1